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Basic Rules of Probability

# Concepts
p(X) probability of X
p(X|M) conditional probability of X given M
p(X, M) joint probability of X and M

# Joint probability — product rule

p(X, M) = p(X|M)p(M)
& Marginal probability — sum/ integral rule

p(X) = / p(X|M)p(M)dM




Bayes’ Rule

# Combining the definition of conditional prob. with the product
and sum rules, we have Bayes’ rule or Bayes’ theorem

p(X, M)
p(X)
p(M ) (X|M)
[ p(M)p(X|M)dM
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Thomas Bayes (1702 — 1761)

& “An Essay towards So]vjn(q a Problem in the Doctrine of Chances”
published at Philosophical Transactions of the Royal Society of
London in 1763




Bayes’ Rule Applied to Machine Learning

# Let D be a given data set; M be a model
p( M) prior probability of M

p(M)p(D|M) p(D|M)  likelihood of M on data

)
p(M |D) = p(D) p(M|D) posterior probability of M given D
)

marginal likelihood or evidence

#® Model Comparison: M = { A}

poaip) = "EEEEE p i) = [ p0IM. MMM

# Prediction:
p(aID, 1) = [ plal M, D, M)p(MID, M) M

‘ under some common assumptions

p(z|M) -




Bayesian Model Selection

@ Naturally considers model complexity penalty — no Overfitting

# See details in (C. Bishop, 2006).




Common Questions

& Why be Bayesian?
# Where does the prior come from?

# How do we do these integrals?




Why be Bayesian?
# One of many answers

# Infinite Exchangeability:

Vn, Vo, p(z1,...,2) = p(To@),-- > Ta(n))

# De Finetti’s Theorem (1955): it (x1,2,,...) are infinitely
exchangeable, then ¥n

n

p(z1, ... ) = / (TIp(il0))ap o)

i=1
for some random variable 9

-

|
=




Overfitting in Big Data

# “with more data overfitting is becoming less of a concern”?
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Overfitting in Big Data
“Big Model + Big Data + Big/ Super Cluster”

Big Learning

? 9 1ayers sparse autoencoder with:

Input to another layer above -local receptive fields to scale up;

(image with 8 channels) - local L2 pooling and local contrast normalization for

One layer

A Number of output 4,0 riant features
channels =8
- 1B parameters (connections)
28! ,
W - 10M 200x200 images
u 5/ - train with 1K machines (16K cores) for 3 days
Number
W of maps = 8 -able to build high-level concepts, e.g., cat faces and
Number of input human bodies
Y

channels = 3 -15.8% accuracy in recognizing 22K objects (70%

Image Size = 200 relative improvements) /




Overfitting in Big Data

# Predictive information grows slower than the amount of
Shannon entropy (Bialek et al., 2001)

Tr 0= fixed J

-®& - variable J, short range interactions

Al & yariable J's, long range decaying interactions |
— fits
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Overfitting in Big Data

# Predictive information grows slower than the amount of
Shannon entropy (Bialek et al., 2001)

VOLUME y
VARIETY pa
VELOCITY g
VALUE

DATA SllyE

4
®
o

Model capacity grows faster than the amount of
predictive information!




Overfitting in Big Data

# Surprisingly, regularization to prevent overfitting is

increasingly important, rather than increasingly irrelevant!

# Increasing research attention, e.g., dropout training (Hinton,

2012)

r =m.xa(Wv)

# More theoretical understanding and extensions

o MCEF (van der Maaten et al., 2013); Logistic-loss (Wager et al.,
2013); Dropout SVM (Chen, Zhu et al., 2014)

/




Why Big Data could be a Big Fail?

Michael I. Jordan
UC Berkeley
Pehong Chen Distinguished Professor
NAS, NAE, NAAS Fellow
ACM, IEEE, IMS, ASA, AAAI Fellow

# When you have large amounts of data, your appetite for hypotheses
tends to get even larger

# If it’s growing faster than the statistical strength of the data, then many
of your inferences are likely to be false. They are likely to be white
noise.

# Too much hype: “The whole big—data thing came and went. It died. It

was Wrong”




Therefore ...

@ Computationally efficient Bayesian models are becorning

increasingly relevant in Big data era

o Relevant: high capacity models need a protection

o Efficient: need to deal with large data volumes




Challenges of Bayesian Methods

Building an Automated Statistician

& Theory

o Improve the classic Bayes theorem

@ Modeling
o scientific and engineering data

o rich side information

# Inference/ learning
o discriminative learning

= large—scale inference algorithrns for Big Data

& Applications

o social media, NLP, computer vision




Readings

# Big Learning with Bayesian Methods, J. Zhu, ]J. Chen, & W.
Hu, arXiv 1411.6370, preprint, 2014
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How to Choose Priors?

# Objective priors - noninformative priors that attempt to
capture ignorance and have good frequentist properties

4 Subjective priors -- priors should capture our beliefs as well as

possible

# Hierarchical priors - multiple layers of priors

pM) = /(M|Oz doz_// (M|a)p(a|B)p(B)dadB = - - -

o the higher, the weaker

& Empirical priors -- Learn some of the parameters of the prior
from the data; known as “Empirical Bayes”
p(M|&) & = argmax p(D|«)

o Pros: robust — overcomes some limitations of mis-specification

o Cons: double counting of evidence / overfitting




How to Choose Priors?

# Conjugate and Non-conjugate tradeoft

# Conjugate priors are relatively easier to compute, but they

might be limited

o Ex: Gaussian-Gaussian, Beta-Bernoulli, Dirichlet-Multinomial,

etc. (see next slide for an example)

# Non-conjugate priors are more flexible, but harder to

compute

o Ex: LogisticNormal—Multinomial




Example 1: Multinomial-Dirichlet Conjugacy

Posterior is in the same class as the prior

# Let
X ~ Multinomial(7), and 7 ~ Dirichlet(«)
# The posterior
p(m|X) o< p(X|m)p(m)
oc (myt ) (AT )

B p x1+ag—1 rxtarg—1
= Dirichlet(7] T )

which is Dirichlet(a + x)




How do We Compute the Integrals?
# Recall that:

p(DIM) = [ p(DIM, M)p(MIB)AM

# This can be a very high dimensional integral

# If we consider latent variables, it leads to additional

dimensions to be integrated out

p(OM) = [ [ p(D, HIM,M)p(MIE) M

a This could be very complicated!




Approximate Bayesian Inference

# In many cases, we resort to approximation methods

# Common examples
a Variational approximations
o Markov chain Monte Carlo methods (MCMC)
o Expectation Propagation (EP)
o Laplace approximation

D e o o

& Developing advanced inference algorithrns is an active area!




Basics of Variational Approximation

# We can lower bound the marginal likelihood

log p(D|M) = log / /p(D,H|M,M)p(M\M)deM

log// HM (H M) dHdM

// (H, M) log p(D, H'Q/lHMjeo(M‘M)deM

o Note: the lower bound is tight if no assumptions made
# Mean-field assumptions: a factorized approximation
q(H, M) = q(H)q(M)

0 optimizes the lower bound with the assumption leads to local

optimums




Basics of Monte Carlo Methods

# a class of computational algorithms that rely on repeated

random sampling to compute their results.

# tend to be used when it is infeasible to compute an exact

result with a deterministic algorithrn

# was coined in the 1940s by John von Neumann, Stanislaw

Ulam and Nicholas Metropolis

Games of Chance




Monte Carlo Methods to Calculate Pi

# Computer Simulation

m
T=4 X —
" N

o N: # points inside the square

om: H points inside the circle

# Buftfon’s Needle Experiment; ‘

="
m

o m: # line crossings




Problems to be Solved
& Sampling

0 to generate a set of samples {2}/, from a given probability
distribution p(z)
a the distribution is called target distribution

o can be from statistical physics or data modeling

& Integral

o To estimate expectations of functions under this distribution




Use Sample to Estimate the Target Dist.

# Draw a set of independent samples (a hard problem)
V1<l1<L, zY ~ p(z)

# Estimate the target distribution as count frequency

. ,
1
p(z) = > 6,0(2) 2 |
=1

Hisogmm
|

Histogram with Unique —H_‘
Points as the Bins - Irr
0.1




Basic Procedure of Monte Carlo Methods

# Draw a set of independent samples  »(2) f(2)
Vi<i<L, z ~ p(z)

# Approximate the expectation with

1 & _
fZZZf(Z(l)) -
=1

L
a where is the distribution p? p(z) ~ % > 6,0 (2) Histogram with Unique
=1

nY

Points as the Bins

0 Why this is good?
A 1

B(f] =E[f] varlf] = 7EI(f — E[f)’]

o Accuracy of estimator does not depend on dimensionality of z

o High accuracy with few (10-20 independent) samples

a However, obtaining independent samples is often not casy!

/




Why Sampling iIs Hard?

& Assumption

o The target distribution can be evaluated, at least to within a

multiplicative constant, i.e.,

p(z) =p*(z)/Z
a where p*(z) can be evaluated
# Two difficulties

o Normalizing constant is typically unknown

o Drawing samples in high—dimensional space is challenging




Many Sampling Methods

# Rejection sampling

4 Importance sampling En

# Markov chain Monte Carlo (MCMC)




Basics of MCMC

# To draw samples from a desired distribution p(z|D)

# We define a Markov chain
rg —> 1 —> L9 —> T3z —> -

o where

pi(z) = /pt—l(w’)q(a?;x’)da:’
a g(x;2") is the transition kernel

# p(z|D) is an invariant (or stationary) distribution of
the Markov chain ¢ iff:

p(elD) = [ pla' Dl a’)ds’




Geometry of MCMC

& Proposal depends on current state
# Not necessarily similar to the target

# Can evaluate the un-normalized target

gt




Gibbs Sampling
# A special case of Metropolis—Hastings algorithm
# Consider the distribution p(x) = p(z1,...,2Mm)

# Gibbs sampling performs the follows
a Initialize {z; :2=1,..., M}
a For 7=1,...,T

Sample CU%T_Fl) ~ p($1|$gr), ZE:(;—), ceey .TS‘;))

. (74+1) (7+1) (r+1) (1)
Sample ~p(ajley T, w T,
Sample 33%;4—1) ~ p($j|39§7+1)> ng—Fl)) ce axg\;_i—_ll)

)




Geometry of Gibbs Sampling

# The target distribution in 2 dimensional space

Lo




Geometry of Gibbs Sampling

angl) is sampled from P(x; |$g))

b/

# Starting from a state x(%)

L9




Geometry of Gibbs Sampling

# A sample is drawn from P (x5 xgtﬂ))

L2

this finishes one single iteration.




Geometry of Gibbs Sampling

# After a few iterations

L2




Bayes' Theorem in the 21st Century

# This year marks the 250t Anniversary of Bayes’ theorem

o Events at: http: // bayesian.org/

® Bradley Efron, Science 7 June 2013: Vol. 340 no. 6137 pp- 1177-
1178

“There are two potent arrows

in the statistician’s quiver

there is no need to g0 hunting

armed with only one.”



http://bayesian.org/meetings/Bayes250-meetings

Parametric Bayesian Inference

M is represented as a finite set of parameters ¢

# A parametric likelihood: x ~ p(- |9)
# Prior on 6: 7(0)

# Posterior distribution

p(x|0)m(0)
flx) = x p(x|6)7(0
Examples:
* Gaussian distribution prior + 2D Gaussian likelihood —> Gaussian posterior distribution

* Dirichilet distribution prior + 2D Multinomial likelihood = Dirichlet posterior distribution

. Sparsity—inducing priors + some likelihood models - Sparse Bayesian inference




Nonparametric Bayesian Inference

M is aricher model, e.g., with an infinite set of parameters

# A nonparametric likelihood: x ~ p(:| M)
# Prior on M: n(M)

# Posterior distribution

_ pMymMm)
PMI) = e i  PMIm(M)

Examples:

— see next slide




Nonparametric Bayesian Inference

probability measure binary matrix |z

2 0 1]

Indian Buffet Process Prior [Griffiths & Gharamani, 2005]

Dirichlet Process Prior [Antoniak, 1974]
+ Gaussian/ Sigmoid/Softmax likelihood

+ Multinomial / Gaussian/ Softmax likelihood

function

-2

0 05 1
input, x

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]
+ Gaussian/ Sigmoid/Softmax likelihood




Why Be Bayesian Nonparametrics?

Let the data speak for themselves

# Bypass the model selection problem

o let data determine model complexity (e.g., the number of
components in mixture models)

o allow model complexity to grow as more data observed

2

1.5

-
.‘ * .
. .

_1.5 1 1 1 1 1 1 1
-2 -1.5 -1 -05 0 0.5 1 1.5 2 2.5




Related Tutorials and Materials

# Tutorial talks:
o Z. Gharamani, ICML 2004. “Bayesian Methods for Machine Learning”
o M.L Jordan, NIPS 2005. “Nonparametric Bayesian Methods: Dirichlet

Processes, Chinese Restaurant Processes and All That”
a P. Orbanz, 20009. “Foundations of Nonparametric Bayesian Methods”
a Y. W.Teh, 2011. “Modern Bayesian Nonparametrics”
a J. Zhu, ACML 2013. “Recent Advances in Bayesian Methods”

# Tutorial articles:

o Gershman & Blei. A Tutorial on Bayesian Nonparametric Models.

Journal of Mathematical Psychology, 56 (2012) 1-12




Example: A Bayesian Ranking Model
# Rank a set of items, e.g., A, B, C, D

o A uniform permutation model

e

P([A,C,B,D)) = P([A,D,C,B]) = -+ = —




Example: A Bayesian Ranking Model

# Rank a set of items
o With a preferred list

Users offer a concentration center 79 = [C, B, A, D]

A generalized Mallows’ model is defined

1.6
1.4} A=0.5

— =1

1.2t 1
A=15 |

P(7) o< exp ( — Ad(, WO)) P(n) ;:g\

0.6}

0.4
0.2} \

U'DD 1 2 3

d(m, )

=1
()]

[Fligner & Verducci. Distance based Ranking Models. J. R. Statist. Soc. B, 1986] /




Example: A Bayesian Ranking Model

# Rank a set of items

o Prior knowledge

conjugate prior exists for generalized Mallows” models (a member of

exponential family)

o Bayesian updates can be done with Bayes’ rule

o Can be incorporated into a hierarchical Bayesian model, e.g.,

topic models

\ [Chen, Branavan, et al., Global models of document structure using latent permutations. ACL, 2009] /




Topic Models




Homework Example

# Mixture of Multinomials

OO0l

114 Zy Wan LBk

& Assumption:

o Each document belongs to a single topic




Multiple Topics exist in a Document

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” cspecially in
How many genes does anjorganism need to - comparison to the 75,000 cenes in the hu
survive! Last week at the genome meeting  man genome, notes Siv Andersson of Uppsala
here,* two genome researchers with radically  University in Sweden, who arrived ar the
different approaches presented complemen- 800 number. But coming up with a consen-
tary views of the hasic genes needed forlife.  sus answer may be more than just a cenetic
One research team, using computer analy numbers game, particularly as more and
ses to compare known venomes, concluded  more genomes are completely mapped and
that today’s organisms can be sustained with — sequenced. “It may be a way of organizing
just 250 genes, and that the earliest life forms — any newly sequenced genome,” L'Xl“l;lin.s
required a mere 128 venes. The _—— Arcady Mushegian, a computational mo
other researcher mapped genes - lecular biologist at the National Center
in a simple }_“-;11‘;15@[;’ and Q.\'ri £ "'_"_amopmm& \ _fnr Biotechnology 11‘1fnr|n;}tinﬂ (N(.TBI)
mated that for this organism, - genome tin Bethesda, Maryland. Comparing an

-~ ~..1703 genes
800 genes are plenty to do the iR

I - . Related and o
_]U.h—blll that anything short  \ o Genes PR modern genes 2
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‘ S \ athway =
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ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modem and ancient genomes.

SCIENCE « VOL. 272 = 24 MAY 1990

Simple intuition: Documents exhibit multiple topics.
[Slides courtesy: D. Blei] /




Probabilistic Latent Semantic Indexing

# Allows multiple topics in a document

OHO—O1<>

d Zdn W, an ,Bk K

D

# Limitations:

a d is a dummy index into the list of documents in training set; no
natural generalization to unseen document;

o # of unknown parameters grows linearly with data size (i.e., KV
+ KD) — overfitting!




Latent Dirichlet Allocation (LDA)

Topic proportions and

Topics Documents )
assignments
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dna 0.82 = - = =2
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e Each topic is a distribution over words

e Each document is a mixture of corpus-wide topics

¢ Each word is drawn from one of those topics  [gjjdes courtesy: D. BleiM




L_atent Dirichlet Allocation

Topics Documents

Topic proportions and
assignments
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[Slides courtesy: D. Blei] /




Latent Dirichlet Allocation

Topics

Topic proportions and

Documents -
assignments

Seeking Life’s Bare (Genetic) Necessities
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[Slides courtesy: D. Blei] /




LDA as a graphical model

mixing topic
proportion assignment words topics
v v v
®9a<p>
N K
D

# Encodes assumptions
# Detines a factorization of the joint distribution
# Connects to algorithms for computing with data

p(0,.2,Wla, 8) = [T p(@18) T p(0ale) ( [T p(zanl0a)p(wan|zan, @)
k=1

= d=1 n=1




A geometric interpretation

topic simplex

word simplex

2~

[Blei etal., 2003] /




LDA as a graphical model

A bl p

K
D

# The joint distribution detines a posterior
p(©,P,Z, Wa, B)
p(Wla, §)

p(@7 ®7Z‘W7a7/8) —

& From a collection of documents, infer
o Per-word topic assighment
o Per-document topic proportion

o Per-corpus topic distributions

# Then, use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, exploration, ...




LDA as a graphical model

mixing topic
proportion assignment words topics
v v v
®9a<p>
N K
D

# Approximate posterior inference algorithms
o Mean-field variational methods (Blei et al., 2003)
o Expectation propagation (Minka & Lafferty, 2002)
o Collapsed Gibbs sampling (Griffiths & Steyvers, 2002)
o Collapsed variational inference (Teh et al., 2006)
a Online variational inference (Hoffman et al., 2010)

o Distributed Gibbs sampling (Ahmed et al., 2012, Yuan et al., 2015)




Approximate Inference
# Variational Inference (Blei et al., 2003; Teh et al., 2006)

p(@7 @7 Z|W7 a? /8)

= min _ KL(q||p)

qgEsome family

# Monte Carlo Markov Chains (Griffiths & Steyvers, 2004)

a Collapsed Gibbs samplers iteratively draw samples from the
local conditionals

(24, = 112-)




Derivation of Collapsed Gibbs Sampling

# Homework: complete the derivation and implement it




Variational Mean-Field Methods

# Details provided in [Blei et al., JMLR 2003, Appendix]




Beyond LDA




-

LDA has been widely extended ...

# LDA can be embedded in more complicated models,
capturing rich structures of the texts

# Extensions are either on

o Priors: e.g., Markov process prior for dynamic topic models, logistic-
normal prior for corrected topic models, etc

o Likelihood models: e.g., relational topic models, multi-view topic
models, etc.

O O O
0 0 0 0
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\_,./I i"\'T : ] : l\iy
D K T
H +f <1 K
B - Gt Be1 B
b Nc K
|r rl.- P
”’Isc 1 T8 ‘Jsc 1

# Tutorials were provide by D. Blei at ICML, SIGKDD, etc.
( )



http://www.cs.princeton.edu/~blei/topicmodeling.html

Logistic-Normal Topic Models

# Bayesian topic models

mixing topic
proportion assignment words topics
\1/ \j/ \j/
@K — 0B
D

# Dirichlet priors are conjugate to the multinomial likelihood

# However, it doesn’t capture the correlation among topics




Logistic-Normal Topic Models
& Logistic—normal prior distribution (Aitchison & Shen, 1980)
na ~ N(u, %)

exp (1})

ok = .
D i €XD (772)

o Logisitc—normal prior can capture the correlationships

o But it is non-conjugate to a multinomial likelihood !

a Variational approximation not scalable (Blei & Lafterty, 2007)




A Scalable Gibbs Sampler

mixing topic

pI'OpOI'tiOIl assignment WOI'dS

D
# Collapse out the topics by conjugacy
# Sample Z: (standard)
. C’wdn + ;B'wdﬂ ng

p(zdn — 1‘Z—'ﬂ:wdﬂaw—-dﬂ:n) X

Z?:l k,—n + Z_} 1 ﬁ.ﬁ'




A Scalable Gibbs Sampler

mixing topic

pI'OpOI'tiOIl assignment WOI'dS
I

D

# Collapse out the topics by conjugacy
# Sample 7 : (challenging)

ng

p(n|Z, W) o< T (TIn% =57 )N (nalie. )

n=1 "
Z_J;{zl e J




A Scalable Gibbs Sampler

mixing topic

pI'OpOI'tiOIl assignment WOI'dS
I

D

# Data augmentation saves!

# For each dimension k:
p(ndlnd®, Z, W) oc €(nima" )N (nd|pd, or)
(erd)Ca

(1 + ePd)Na

Lnhng") =




Experimental Results

# Leverage big clusters

# Allow learning big models that can’t fit on a single machine
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[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 2013]

* 40 machines;

* 480 CPU cores

®*(0.285M NYTimes pages
* K =200~ 1000




Experimental Results

# Leverage big clusters

# Allow learning big models that can’t fit on a single machine

data set D K vCTM  gCTM

NIPS 1.2K 100 | 1.9hr 8.9 min
20NG 11K 200 16 hr 9 min
NYTimes 285K 400 | N/A* 0.5 hr
Wiki 6M 1000 | N/A* 17 hr

*not finished within 1 week.

[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 2013]




Scalable Graph Visualization

[Liu, Wang, Chen, Zhu, & Guo. IEEE VAST 2014]



D:/THU_Group/973/973_XuZongben/2014中期检查/TopicPanorama-Vast-Eng-final.mp4
D:/THU_Group/973/973_XuZongben/2014中期检查/TopicPanorama-Vast-Eng-final.mp4

Supervised LDA with Rich Likelihood

# Following the standard Bayes’ way of thinking, sSLDA defines a
richer likelihood model

@Al T
—n

p(y, W|Z,®.n,a,5) = p(y|Z,n)p(W|Z, D, v, 5)
o per-document likelihood ¥Yq € {0,1}

ex 7z \\¥d 1 N
(yd|Z,77) { P(77 d} Zk :ﬁz_:

1+ exp(n'zy)

a both variational and Monte Carlo methods can be developed

(Blei & McAuliffe, NIPS’07; Wang et al., CVPR’09 ; Zhu et al., ACL 2013)




Imbalance Issue with sLDA
# A document has hundreds of

e e e O

& ... but only one class label

3
>

# Imbalanced likelihood 075, | |

combination
0.7F

p(y, W|Z,®,n) = p(y|Z,n)p(W|Z, D)

Accuracy

o

(7]

3]

T

-~
~,

--_,‘. -._~.
. IH_'\' =
DY
NN

# Too weak influence from 5,

0.6 ,
. £ . =+= Gibbs-sLDA
super vision I iotpys
- B = GibbsLDA+SVM
055 1 1 1 I I
20 40 60 80 100

# Topics
(Halpern et al., ICML 2012; Zhu et al., ACL 2013) %




Max-margin Supervised Topic Models

@ e
M@

# Can we learn supervised topic models in a max-margin way?

# How to perform posterior inference?
o Can we do variational inference?

o Can we do Monte Carlo?

# How to generalize to nonparametric models?




MedLDA:
Max-margin Supervised Topic Models

@@}

\"*QK

a An LDA likelihood model for describing word counts

& Two components

o An max-margin classifier for considering supervising signal

@ Challenges
a How to consider uncertainty of latent variables in definin(q the c]assyrier?
4 Nice work that has inspired our design

o Bayes classifiers (McAllester, 2003; Langford & Shawe-Taylor, 2003)

o Maximum entropy discrimination (MED) (Jaakkola, Marina & Jebara,
1999; Jebara’s Ph.D thesis and book)




MedLDA:
Max-margin Supervised Topic Models

@@]

\"*QK

o The hypothesis space is characterized by (77, 2)

# The averaging classifier

o Infer the posterior distribution

q(n, Zly, W)
0 g-weighted averaging classitier (1, € {—1, 1} )

y = signf(w) = signy[f(n, z; w)|

1
fnz;w)=n'z 2= ﬁgﬂ(zﬁ =

Q\Iote: Multi-class classification can be done in many ways, 1-vs-1, 1-vs-all, Crammer & Singer’s rnethod/

o where




MedLDA:
Max-margin Supervised Topic Models

oS s

D=

& Bayesian inference with max-margin posterior constraints

i Vs 0.7Z. ) + 2R
P . (¢(n,©,Z,®)) + 2c-R(q)

a objective for Bayesian inference in LDA

L(q) = KL(q||po(n,0,Z, D)) — E,[logp(W|Z, D)]

o posterior regularization is the hinge loss

R(g) = max(0,1— yaf(wa))




Inference Algorithms

& Regularized Bayesian Inference

i P 0,7Z.®)) +2-R
i (q(n, )) +2¢-R(q)

# An iterative procedure with ¢(n,0,Z, ®) = q(1)q(0,Z, ®)

min  KL(q(n)||po(n —I—chd
q(n),¢ A SVM problem

Vd, s.t.: v, [77] E, [Zd] >1— gd- with a normal prior

min  L(q(©,Z,P)) +c
(LU 2D e

Vd, s.t.: yqu[n]TEq[Zd] >1—¢&,.

Variational approximation
or Monte Carlo methods

/




Empirical Results on 20Newsgroups
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Empirical Results on 20Newsgroups
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Sparser and More Salient Representations

comp. graphlcs
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Multi-class Classification with
Crammer & Singer’s Approach

0.8¢
> 0.7+
)
©
-
g 0.6 == iMedLDA ||
< ——gMedLDA
05} ——fMedLDA |
' gLDA
——fLDA
0.4 ' ' ' '
20 40 60 80 100 120

# Topics

# Observations:
a Inference algorithms affect the performance;

0 Max—margin learning improves a lot




Gibbs MedLDA

b

N K

N X))
# The Gibbs classifier

o The hypothesis space is characterized by (77, 2)

o Infer the posterior distribution

q(n, Zly, W)
a A Gibbs classifier

Ylnz = signf(n,z; w), where (n,2z) ~ q(n, Zly, W)

o where

N
1
fnzzw)=n'z &= ﬁ;ﬂz:ﬁ =1)

(Zhu, Chen, Perkins, Zhang, JMLR 2014)




Gibbs MedLDA

# Let’s consider the “pseudo-observed” classitier it (7,z) are
given
f&‘n,z — Sigﬂf(ﬂ, Z; W) i
o The empirical training error

. = Zd
R, Z) = 1Jaln.z # ya)
d=1

o A good convex surrogate loss is the hinge loss (an upper bound)

D
R(na Z) — Z max((), Cd)a where Ga=1-— ydUTzd
d=1

# Now the question is how to consider the uncertainty?

o A Gibbs classifier takes the expectation!




Gibbs MedLDA

b

N K

N Y@ )

# Bayesian inference with max-margin posterior constraints

' L ©.7Z ¢ 2ct R’
oedn (q(n,©,Z,)) + cm

o an upper bound of the expected training error (empirical risk)

D
=) Ey[max(0,¢a)] > ZE (9d # ya)]
d=1




Gibbs MedLDA vs. MedLDA
# The MedLDA problem

i L 0.7Z.®)) + 2R
o (¢(n,©,Z,®)) +2c-R(q)

R(q) = Y _max(0,1 = yaf (Wa))
d
# Applying Jensen’s Inequality, we have

R'(q) = R(q)

o Gibbs MedLDA can be seen as a relaxation of MedLLDA




Gibbs MedLDA
# The problem

i L O.7.d)) + 2¢-
o (¢(n,©,Z,®)) +2c-R(q)

# Solve with Lagrangian methods

n,0,Z,)p(W|Z,)p(y|Z,n)

o Po
Q(TI)@,Z’®) B 77b(}’7 W)

a The pseudo-likelihood é(y|Z,n) = H d(yaln, zq)
d

é(yd|zd7 77) — exp{—ZC maX(O, Cd)}




Gibbs MedLDA

4 Lemma [Scale Mixture Rep.] (Polson & Scott, 2011):
o The pseudo-likelihood can be expressed as

1 ( ()\d + CCd)Q
exp | —
vV 27T>\d 2)\d

# What does the lemma mean?

O (yalza,n) = /OOO )d)\d

o It means:

4(1,0,7, &) = / a(1, )\, ©, Z, B)d

po(n,©,Z,®)p(W|Z,P)o(y, A\ Z,n)

where ¢(n, A, 0,Z,®) = V(y, W)

oy, NZ. 1) = [~ exp (— et ch)Q)
d

\ 27T)\d 2)\d




A Gibbs Sampling Algorithm

# Infer the joint distribution

1,0,Z,P)p(W|Z, ®)p(y, \|Z,n)
Y(y, W)
# A Gibbs sampling algorithm iterates over:

a Sample 7't ~ g(n|\, ©F, ZF, ®Y) o po(n)d(y, \'|Z, n)

a Gaussian distribution when the prior is Gaussian

- Sample )\t—l—l ~ q(Mnt—l—l’@t,th(I)t) X cb(y,)\|Zt,77t+1)

a generalized inverse Gaussian distribution, i.e., AL follows inverse

11, 7, 0.7, @) — 0

Gaussian
o Sample (0,Z, @) ~ p(©,Z, d|n'TH A
x po(©,Z, ®)p(W|Z, D) (y, X2, ")

a supervised LDA model with closed-form local conditionals by exploring

data independency.




A Collapsed Gibbs Sampling Algorithm

# The collapsed joint distribution
61(777 )\7 Z) — /Q(n, )\, @, Z7 (I))d@dq)

# A Gibbs sampling algorithm iterates over:
o Sample n'*tt ~ g(n|\", Z") < po(n)o(y, | Z", )

a Gaussian distribution when the prior is Gaussian
t+1 t+1 t t t+1
a Sample A7 ~ g(A[n"™, ZY) o< ¢y, A Z°,n"")
a generalized inverse Gaussian distribution, i.e., A~ 1 follows inverse

GGaussian

a Sample Z ~ Q(Z|77t+1a)\t+1)
x /po(@,z,cb)p(vv|z,q>)¢(y, ANZ, 0T dOdd
closed-form local conditionals

Q(Zgn — 1|Z—'7777 Aawdn — t)




The Collapsed Gibbs Sampling Algorithm

Algorithm 1 Collapsed Gibbs Sampling Algorithm

I: Imitialization: set A = 1 and randomly draw z.; from
a uniform distribution.

2: form =1to M do
3:  draw the classifier from the normal distribution (11)
4. ford=1to D do
5: for each word n in document d do
6: draw the topic using distribution (12)
7: end for
8: draw /\;1 (and thus A,) from distribution (13).
9:  end for
10: end for

Easy to Parallelize




Some Analysis

# The Markov chain is guaranteed to converge

# Per-iteration time complexity
O(K3 + Ntota,lK)

a Niyrqr the total number of words
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Accuracy

Experiments

& Sensitivity to burn-in: binary classification
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Experiments

# Leverage big clusters

# Allow learning big models that can’t fit on a single machine
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[Zhu, Zheng, Zhou, & Zhang, KDD2013]

1000

-.- -9 * 20 machines;

* 240 CPU cores

* 1.1M multi-labeled
Wiki pages

* 20 categories (scale to
hundreds/thousands of

categories)




sSummary

# Bayesian methods are highly relevant in learning with big
data;

# Topic models are a suitable of statistical models for extracting

semantic meanings from large corpora;

# Many developments beyond LDA




