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Basic Rules of Probability

Concepts

probability of X

conditional probability of X given  

joint probability of X and 

Joint probability – product rule

Marginal probability – sum/integral rule



Bayes’ Rule

Combining the definition of conditional prob. with the product 
and sum rules, we have Bayes’ rule or Bayes’ theorem

“An Essay towards Solving a Problem in the Doctrine of Chances”  
published at Philosophical Transactions of the Royal Society of 
London in 1763

Thomas Bayes (1702 – 1761) 



Bayes’ Rule Applied to Machine Learning

Let      be a given data set;      be a model

Model Comparison:

Prediction:

prior probability of 

likelihood of         on data 

posterior probability of         given

marginal likelihood or evidence 

under some common assumptions



Bayesian Model Selection

Naturally considers model complexity penalty – no overfitting

See details in (C. Bishop, 2006).



Common Questions

Why be Bayesian?

Where does the prior come from?

How do we do these integrals?



Why be Bayesian?

One of many answers

Infinite Exchangeability:

De Finetti’sTheorem (1955): if                     are infinitely 

exchangeable, then

for some random variable    

x1 x2 xn

x1 x2 xn



Overfitting in Big Data

“with more data overfitting is becoming less of a concern”?



Overfitting in Big Data

“Big Model + Big Data + Big/Super Cluster”

Big Learning

9 layers sparse autoencoder with:

-local receptive fields to scale up; 

- local L2 pooling and local contrast normalization for 

invariant features

- 1B parameters (connections)

- 10M 200x200 images

- train with 1K machines (16K cores) for 3 days

-able to build high-level concepts, e.g., cat faces and 

human bodies

-15.8% accuracy in recognizing 22K objects (70% 

relative improvements)



Overfitting in Big Data

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001)



Overfitting in Big Data

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001)

Model capacity grows faster than the amount of 

predictive information!



Overfitting in Big Data

Surprisingly, regularization to prevent overfitting is 

increasingly important, rather than increasingly irrelevant!

Increasing research attention, e.g., dropout training (Hinton, 

2012)

More theoretical understanding and extensions

 MCF (van der Maaten et al., 2013); Logistic-loss (Wager et al., 

2013); Dropout SVM (Chen, Zhu et al., 2014)



Why Big Data could be a Big Fail?

When you have large amounts of data, your appetite for hypotheses 
tends to get even larger

If it’s growing faster than the statistical strength of the data, then many 
of your inferences are likely to be false. They are likely to be white 
noise.

Too much hype: “The whole big-data thing came and went. It died. It 
was wrong”

Michael I. Jordan

UC Berkeley

Pehong Chen Distinguished Professor

NAS, NAE, NAAS Fellow

ACM, IEEE, IMS, ASA, AAAI Fellow



Therefore …

Computationally efficient Bayesian models are becoming 

increasingly relevant in Big data era

 Relevant: high capacity models need a protection

 Efficient: need to deal with large data volumes



Challenges of Bayesian Methods

Theory
 Improve the classic Bayes theorem

Modeling
 scientific and engineering data
 rich side information

Inference/learning
 discriminative learning
 large-scale inference algorithms for Big Data

Applications
 social media, NLP, computer vision

Building an Automated Statistician



Readings

Big Learning with Bayesian Methods, J. Zhu, J. Chen, & W. 

Hu, arXiv 1411.6370, preprint, 2014



How to Choose Priors?

Objective priors -- noninformative priors that attempt to 
capture ignorance and have good frequentist properties

Subjective priors -- priors should capture our beliefs as well as 
possible

Hierarchical priors  -- multiple layers of priors

 the higher, the weaker

Empirical priors -- Learn some of the parameters of the prior 
from the data; known as “Empirical Bayes”

 Pros: robust – overcomes some limitations of mis-specification

 Cons: double counting of evidence / overfitting



How to Choose Priors?

Conjugate and Non-conjugate tradeoff

Conjugate priors are relatively easier to compute, but they 

might be limited

 Ex: Gaussian-Gaussian, Beta-Bernoulli, Dirichlet-Multinomial, 

etc. (see next slide for an example)

Non-conjugate priors are more flexible, but harder to 

compute

 Ex: LogisticNormal-Multinomial 



Example 1: Multinomial-Dirichlet Conjugacy

Let

The posterior 

which is

Posterior is in the same class as the prior



How do We Compute the Integrals?

Recall that:

This can be a very high dimensional integral

If we consider latent variables, it leads to additional 

dimensions to be integrated out

 This could be very complicated!



Approximate Bayesian Inference

In many cases, we resort to approximation methods

Common examples

 Variational approximations

 Markov chain Monte Carlo methods (MCMC)

 Expectation Propagation (EP)

 Laplace approximation

 …

Developing advanced inference algorithms is an active area!



Basics of Variational Approximation

We can lower bound the marginal likelihood

 Note: the lower bound is tight if no assumptions made

Mean-field assumptions: a factorized approximation

 optimizes the lower bound with the assumption leads to local 

optimums



Basics of Monte Carlo Methods

a class of computational algorithms that rely on repeated 

random sampling to compute their results.

tend to be used when it is infeasible to compute an exact 

result with a deterministic algorithm

was coined in the 1940s by John von Neumann, Stanislaw 

Ulam and Nicholas Metropolis

Games of Chance



Monte Carlo Methods to Calculate Pi

Computer Simulation

 N: # points inside the square

 m: # points inside the circle

Bufffon’s Needle Experiment

 m: # line crossings



Problems to be Solved 

Sampling

 to generate a set of samples                 from a given probability 

distribution

 the distribution is called target distribution

 can be from statistical physics or data modeling

Integral

 To estimate expectations of functions under this distribution



Use Sample to Estimate the Target Dist.

Draw a set of independent samples (a hard problem)

Estimate the target distribution as count frequency

Histogram with Unique

Points as the Bins



Basic Procedure of Monte Carlo Methods

Draw a set of independent samples

Approximate the expectation with

 where is the distribution p?

 why this is good?

 Accuracy of estimator does not depend on dimensionality of z

 High accuracy with few (10-20 independent) samples

 However, obtaining independent samples is often not easy!

Histogram with Unique

Points as the Bins



Why Sampling is Hard?

Assumption

 The target distribution can be evaluated, at least to within a 

multiplicative constant, i.e., 

 where           can be evaluated 

Two difficulties

 Normalizing constant is typically unknown

 Drawing samples in high-dimensional space is challenging



Many Sampling Methods

Rejection sampling

Importance sampling

Markov chain Monte Carlo (MCMC)



Basics of MCMC

To draw samples from a desired distribution

We define a Markov chain

 where

 is the transition kernel

is an invariant (or stationary) distribution of 

the Markov chain      iff:



Geometry of MCMC

Proposal depends on current state

Not necessarily similar to the target

Can evaluate the un-normalized target 



Gibbs Sampling

A special case of Metropolis-Hastings algorithm

Consider the distribution

Gibbs sampling performs the follows

 Initialize

 For 

 Sample

 Sample

 Sample



Geometry of Gibbs Sampling

The target distribution in 2 dimensional space



Geometry of Gibbs Sampling

Starting from a state        ,            is sampled from



Geometry of Gibbs Sampling

A sample is drawn from 

this finishes one single iteration.



Geometry of Gibbs Sampling

After a few iterations



Bayes' Theorem in the 21st Century

This year marks the 250th Anniversary of Bayes’ theorem

 Events at: http://bayesian.org/

Bradley Efron, Science 7 June 2013:  Vol. 340 no. 6137 pp. 1177-

1178 

“There are two potent arrows 

in the statistician’s quiver

there is no need to go hunting 

armed with only one.”

http://bayesian.org/meetings/Bayes250-meetings


Parametric Bayesian Inference

A parametric likelihood: 

Prior on θ :

Posterior distribution

is represented as a finite set of parameters     

Examples:
• Gaussian distribution prior + 2D Gaussian likelihood         → Gaussian posterior distribution 

• Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution 

• Sparsity-inducing priors + some likelihood models            → Sparse Bayesian inference



Nonparametric Bayesian Inference

A nonparametric likelihood: 

Prior on   :

Posterior distribution

Examples:
→ see next slide

is a richer model, e.g., with an infinite set of parameters



Nonparametric Bayesian Inference

probability measure binary matrix

function

Dirichlet Process Prior [Antoniak, 1974]

+ Multinomial/Gaussian/Softmax likelihood

Indian Buffet Process Prior [Griffiths & Gharamani, 2005]

+ Gaussian/Sigmoid/Softmax likelihood

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]

+ Gaussian/Sigmoid/Softmax likelihood



Why Be Bayesian Nonparametrics?

Bypass the model selection problem

 let data determine model complexity (e.g., the number of 
components in mixture models)

 allow model complexity to grow as more data observed

Let the data speak for themselves



Related Tutorials and Materials

Tutorial talks:

 Z. Gharamani, ICML 2004. “Bayesian Methods for Machine Learning”

 M.I. Jordan, NIPS 2005. “Nonparametric Bayesian Methods: Dirichlet

Processes, Chinese Restaurant Processes and All That”

 P. Orbanz, 20009. “Foundations of Nonparametric Bayesian Methods”

 Y. W. Teh, 2011. “Modern Bayesian Nonparametrics” 

 J. Zhu, ACML 2013. “Recent Advances in Bayesian Methods”

Tutorial articles:

 Gershman & Blei. A Tutorial on Bayesian Nonparametric Models. 

Journal of Mathematical Psychology, 56 (2012) 1-12



Example: A Bayesian Ranking Model

Rank a set of items, e.g., A, B, C, D

 A uniform permutation model

P([A;C;B;D]) = P([A;D;C;B]) = ¢ ¢ ¢ =
1

4!



Example: A Bayesian Ranking Model

Rank a set of items

 With a preferred list

 Users offer a concentration center

 A generalized Mallows’ model is defined

¼0 = [C;B;A;D]

[Fligner & Verducci. Distance based Ranking Models. J. R. Statist. Soc. B, 1986]



Example: A Bayesian Ranking Model

Rank a set of items

 Prior knowledge

 conjugate prior exists for generalized Mallows’ models (a member of 

exponential family)

 Bayesian updates can be done with Bayes’ rule

 Can be incorporated into a hierarchical Bayesian model, e.g., 

topic models

[Chen, Branavan, et al., Global models of document structure using latent permutations. ACL, 2009]



Topic Models



Homework Example

Mixture of Multinomials

Assumption:

 Each document belongs to a single topic

D

N
WdnZdπ

 
βk

K

P ( w d ) =

KX

k = 1

P ( w d j z d = k ) P ( z d = k ) /

KX

k = 1

¼ k

Y

w

¯ T d w

k w

T d w : t h e n u m b e r o f t i m e s t h a t w o r d w a p p e a r s i n d o c u m e n t d



Multiple Topics exist in a Document

[Slides courtesy: D. Blei]



Probabilistic Latent Semantic Indexing

Allows multiple topics in a document

Limitations:

 d is a dummy index into the list of documents in training set; no 
natural generalization to unseen document;

 # of unknown parameters grows linearly with data size (i.e., KV
+ KD) – overfitting!

D

N
WdnZdn βk

K
d

P ( d ; w d ) = p ( d )
Y

n

Ã
KX

k = 1

P ( z d n = k j d ) P ( w d n j ¯ k )

!



Latent Dirichlet Allocation (LDA)

[Slides courtesy: D. Blei]



Latent Dirichlet Allocation

[Slides courtesy: D. Blei]



Latent Dirichlet Allocation

[Slides courtesy: D. Blei]



LDA as a graphical model

Encodes assumptions

Defines a factorization of the joint distribution

Connects to algorithms for computing with data

mixing 

proportion topics

topic 

assignment words



A geometric interpretation

[Blei et al., 2003]



LDA as a graphical model

The joint distribution defines a posterior

From a collection of documents, infer
 Per-word topic assignment
 Per-document topic proportion 
 Per-corpus topic distributions

Then, use posterior expectations to perform the task at hand, e.g., 
information retrieval, document similarity, exploration, …



LDA as a graphical model

Approximate posterior inference algorithms
 Mean-field variational methods (Blei et al., 2003)
 Expectation propagation (Minka & Lafferty, 2002)
 Collapsed Gibbs sampling (Griffiths & Steyvers, 2002)
 Collapsed variational inference (Teh et al., 2006)
 Online variational inference (Hoffman et al., 2010)
 Distributed Gibbs sampling (Ahmed et al., 2012, Yuan et al., 2015)
 …

mixing 

proportion topics

topic 

assignment words



Approximate Inference

Variational Inference (Blei et al., 2003; Teh et al., 2006)

Monte Carlo Markov Chains (Griffiths & Steyvers, 2004)

 Collapsed Gibbs samplers iteratively draw samples from the 
local conditionals

p(£;©;ZjW;®;¯)

q¤ = min
q2some family

KL(qkp)



Derivation of Collapsed Gibbs Sampling

Homework: complete the derivation and implement it



Variational Mean-Field Methods

Details provided in [Blei et al., JMLR 2003, Appendix]



Beyond LDA



LDA has been widely extended …

LDA can be embedded in more complicated models, 
capturing rich structures of the texts

Extensions are either on
 Priors: e.g., Markov process prior for dynamic topic models, logistic-

normal prior for corrected topic models, etc
 Likelihood models: e.g., relational topic models, multi-view topic 

models, etc.

Tutorials were provide by D. Blei at ICML, SIGKDD, etc. 
(http://www.cs.princeton.edu/~blei/topicmodeling.html) 

http://www.cs.princeton.edu/~blei/topicmodeling.html


Logistic-Normal Topic Models

Bayesian topic models

Dirichlet priors are conjugate to the multinomial likelihood

However, it doesn’t capture the correlation among topics

mixing 

proportion topics

topic 

assignment words



Logistic-Normal Topic Models

Logistic-normal prior distribution (Aitchison & Shen, 1980)

 Logisitc-normal prior can capture the correlationships

 But it is non-conjugate to a multinomial likelihood！

 Variational approximation not scalable (Blei & Lafferty, 2007)
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A Scalable Gibbs Sampler

Collapse out the topics by conjugacy

Sample Z: (standard)

mixing 

proportion topics

topic 

assignment words

´d¹;§



A Scalable Gibbs Sampler

Collapse out the topics by conjugacy

Sample    : (challenging)

mixing 

proportion topics

topic 

assignment words

´d¹;§

´



A Scalable Gibbs Sampler

Data augmentation saves!

For each dimension k:

mixing 

proportion topics

topic 

assignment words

´d¹;§



Experimental Results

Leverage big clusters

Allow learning big models that can’t fit on a single machine

• 40 machines; 

• 480 CPU cores

• 0.285M NYTimes pages

• K = 200 ~ 1000

[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 2013]



Experimental Results

Leverage big clusters

Allow learning big models that can’t fit on a single machine

[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 2013]



Scalable Graph Visualization

[Liu, Wang, Chen, Zhu, & Guo. IEEE VAST 2014]

D:/THU_Group/973/973_XuZongben/2014中期检查/TopicPanorama-Vast-Eng-final.mp4
D:/THU_Group/973/973_XuZongben/2014中期检查/TopicPanorama-Vast-Eng-final.mp4


Supervised LDA with Rich Likelihood

Following the standard Bayes’ way of thinking, sLDA defines a 
richer likelihood model

 per-document likelihood

 both variational and Monte Carlo methods can be developed

(Blei & McAuliffe, NIPS’07; Wang et al., CVPR’09 ; Zhu et al., ACL 2013)



Imbalance Issue with sLDA

A document has hundreds of 

words 

… but only one class label

Imbalanced likelihood 

combination

Too weak influence from 

supervision

(Halpern et al., ICML 2012; Zhu et al., ACL 2013)



Max-margin Supervised Topic Models

Can we learn supervised topic models in a max-margin way?

How to perform posterior inference?

 Can we do variational inference?

 Can we do Monte Carlo?

How to generalize to nonparametric models? 



MedLDA:

Max-margin Supervised Topic Models

Two components
 An LDA likelihood model for describing word counts
 An max-margin classifier for considering supervising signal 

Challenges
 How to consider uncertainty of latent variables in defining the classifier?

Nice work that has inspired our design
 Bayes classifiers (McAllester, 2003; Langford & Shawe-Taylor, 2003)
 Maximum entropy discrimination (MED) (Jaakkola, Marina & Jebara, 

1999; Jebara’s Ph.D thesis and book)



MedLDA:

Max-margin Supervised Topic Models

The averaging classifier
 The hypothesis space is characterized by (η, Z)
 Infer the posterior distribution

 q-weighted averaging classifier (                           )

 where

Note: Multi-class classification can be done in many ways, 1-vs-1, 1-vs-all, Crammer & Singer’s method



MedLDA:

Max-margin Supervised Topic Models

Bayesian inference with max-margin posterior constraints

 objective for Bayesian inference in LDA

 posterior regularization is the hinge loss



Inference Algorithms

Regularized Bayesian Inference

An iterative procedure with

A SVM problem 

with a normal prior

Variational approximation

or Monte Carlo methods



Empirical Results on 20Newsgroups

Topic representations



Empirical Results on 20Newsgroups



Sparser and More Salient Representations

Comp.graphics:
comp.graphics

politics.mideast

MedLDA LDA



Multi-class Classification with 

Crammer & Singer’s Approach

Observations:

 Inference algorithms affect the performance;

 Max-margin learning improves a lot



Gibbs MedLDA

The Gibbs classifier
 The hypothesis space is characterized by (η, Z)
 Infer the posterior distribution

 A Gibbs classifier

 where

(Zhu, Chen, Perkins, Zhang, JMLR 2014)



Gibbs MedLDA

Let’s consider the “pseudo-observed” classifier if           are 

given

 The empirical training error

 A good convex surrogate loss is the hinge loss (an upper bound)

Now the question is how to consider the uncertainty?

 A Gibbs classifier takes the expectation!



Gibbs MedLDA

Bayesian inference with max-margin posterior constraints

 an upper bound of the expected training error (empirical risk)



Gibbs MedLDA vs. MedLDA

The MedLDA problem

Applying Jensen’s Inequality, we have

 Gibbs MedLDA can be seen as a relaxation of MedLDA



Gibbs MedLDA

The problem

Solve with Lagrangian methods

 The pseudo-likelihood



Gibbs MedLDA

Lemma [Scale Mixture Rep.] (Polson & Scott, 2011):

 The pseudo-likelihood can be expressed as

What does the lemma mean?

 It means: 



A Gibbs Sampling Algorithm

Infer the joint distribution

A Gibbs sampling algorithm iterates over:

 Sample 

 a Gaussian distribution when the prior is Gaussian

 Sample 

 a generalized inverse Gaussian distribution, i.e.,          follows inverse 

Gaussian

 Sample 

 a supervised LDA model with closed-form local conditionals by exploring 

data independency.



A Collapsed Gibbs Sampling Algorithm

The collapsed joint distribution

A Gibbs sampling algorithm iterates over:

 Sample 

 a Gaussian distribution when the prior is Gaussian

 Sample 

 a generalized inverse Gaussian distribution, i.e.,          follows inverse 

Gaussian

 Sample 

 closed-form local conditionals



The Collapsed Gibbs Sampling Algorithm

Easy to Parallelize



Some Analysis

The Markov chain is guaranteed to converge

Per-iteration time complexity

 the total number of words



Experiments

20Newsgroups binary classification



Experiments

Sensitivity to burn-in: binary classification



Experiments

Leverage big clusters

Allow learning big models that can’t fit on a single machine

[Zhu, Zheng, Zhou, & Zhang, KDD2013]

• 20 machines; 

• 240 CPU cores

• 1.1M multi-labeled  

Wiki pages

• 20 categories (scale to 

hundreds/thousands of 

categories)



Summary

Bayesian methods are highly relevant in learning with big 

data;

Topic models are a suitable of statistical models for extracting 

semantic meanings from large corpora;

Many developments beyond LDA


